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Abstract

This study explores the use of Domain Randomization (DR) to enhance the general-
ization capabilities of Deep Reinforcement Learning (DRL) agents in financial portfolio
management. DRL agents trained solely on historical market data often overfit to
specific regimes, limiting their effectiveness in dynamic real-world environments. To
address this, we implement DR techniques by perturbing simulated market parameters
(such as asset volatility, price dynamics, and noise levels) during training, encouraging
agents to develop robust, generalizable strategies. Using the Deep Deterministic Policy
Gradient (DDPG) algorithm, we conduct extensive experiments on Dow Jones data and
compare the performance of DR-trained agents with conventionally trained ones. The
results demonstrate statistically significant improvements in Sharpe ratios across multiple
metrics (maximum, quartile, and mean). These findings suggest that DR can serve as
an effective regularizer, reducing overfitting and improving the resilience of AI-driven
trading strategies in volatile markets.

Keywords: Reinforcement Learning (RL); Deep Reinforcement Learning (DRL); Deep
Deterministic Policy Gradient (DDPG); Domain Randomization (DR); Financial Portfolio
Management; Quantitative Finance.
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1. Introduction

Financial portfolio management is a complex and dynamic problem that requires sophisticated strategies
to maximize returns while mitigating risks. Traditional approaches to portfolio management have relied
heavily on statistical models, econometric techniques, and heuristic methods (Fama, 1970; Markowitz,
1952). However, the advent of machine learning, particularly DRL, has introduced new possibilities for
automating and optimizing financial decision-making (Jiang et al., 2017; Yang et al., 2020). DRL-based
agents have demonstrated promising results in sequential decision-making tasks, making them a viable
alternative for portfolio allocation strategies (Ye et al., 2020; Z. Zhang et al., 2020).

Despite their potential, DRL agents trained for financial portfolio management face several signifi-
cant challenges. One of the most critical issues is generalization—the ability of an agent trained in a
specific environment to perform well in real-world financial markets, which are inherently non-stationary,
stochastic, and characterized by high levels of uncertainty (Charpentier et al., 2021; Cobbe et al., 2019).
Training on historical market data alone often leads to overfitting, where an agent learns strategies that
perform well on past data but fail when exposed to new or unseen market conditions (Sutton & Barto,
2018).

To address this challenge, DR has emerged as a powerful technique to improve the robustness and
adaptability of DRL agents. DR involves systematically perturbing the training environment by intro-
ducing variations in key parameters, such as asset price dynamics, volatility structures, transaction costs,
and market microstructure (Peng et al., 2018; Pinto et al., 2017). By exposing the DRL agent to a wide
range of market conditions during training, DR encourages the development of strategies that generalize
better to real-world scenarios (Sadeghi & Levine, 2017; Tobin et al., 2017).

This technique has been successfully applied in robotics and computer vision to bridge the gap be-
tween simulation and reality (Tobin et al., 2017), but its potential for financial applications remains
underexplored (Benhamou et al., 2021; Spooner & Savani, 2020). The objective of this thesis is to in-
vestigate the effectiveness of DR in enhancing the generalization capabilities of DRL agents trained for
financial portfolio management. Specifically, this research aims to:

a) Develop a DRL framework for portfolio management that integrates DR techniques (Yu et al.,
2019).

b) Evaluate the impact of different randomization strategies on the performance and robustness of
DRL agents (Wang et al., 2021).

c) compare DR agents with conventionally trained agents using various performance metrics, including
cumulative returns, Sharpe ratio (Sharpe, 1966), and maximum drawdown (H. Park et al., 2020).

d) analyze the adaptability of DR agents to out-of-sample market conditions and extreme events
(Benhamou et al., 2021).

By addressing these research objectives, this study seeks to contribute to the growing body of literature
on DRL for financial applications and provide insights into improving the practical deployment of AI-
driven trading strategies. The findings could offer significant implications for both academic research
and industry practitioners, highlighting the role of DR in enhancing the robustness of AI-driven portfolio
management (Z. Zhang et al., 2020).

The primary motivation behind this study is to address a critical challenge in the application of
DRL to financial portfolio management: the susceptibility of DRL agents to overfitting spurious patterns
in historical market data (Sutton & Barto, 2018). Financial markets are inherently noisy and non-
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stationary, and DRL agents, when trained on limited or unrepresentative samples, may learn patterns that
do not generalize well to unseen data. This overfitting can lead to poor out-of-sample performance and
ultimately undermine the reliability of automated trading strategies. We hypothesize that by introducing
DR techniques during training (e.g. injecting stochasticity into the environment or perturbing the data)
we can increase the agent’s robustness to market variability. In particular, DR has the potential to reduce
the variance of predictions by forcing the agent to focus on stable, generalizable signals rather than noise.
Through this lens, our study investigates the efficacy of DR as a regularization strategy to enhance the
generalization capabilities of DRL agents in dynamic financial environments.

The structure of the paper is as follows. State-of-the-Art (Section 2) presents a review of the state-
of-the-art literature on generalization challenges in DRL, with an emphasis on DR. Scope of the Study &
Reach (Section 3) defines the scope, objectives, and limitations of our study. Theoretical Framework &
Methodology (Section 4) outlines the theoretical background and methodological framework, including
the DRL agent architecture, the use of the DDPG algorithm, and the implementation of DR. Experimental
Design & Results (Section 5) details the experimental design and reports the results, both quantitative
and qualitative. Finally, Conclusions & Future Work (Section 6) provides conclusions and proposes
directions for future work.
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2. State-of-the-Art

Understanding the current landscape of research is essential for identifying both the limitations and the
opportunities within DRL applied to financial portfolio management. This section reviews the most
relevant developments in the field, with a particular focus on how DR techniques have been leveraged to
improve generalization in dynamic and uncertain environments, such as the one discussed.

2.1. Domain Randomization as a means of Generalization

Generalization to unseen conditions is a core challenge in DRL, especially in non-stationary environments
where the underlying data distributions shift over time. Standard DRL agents often exhibit excellent
performance on the training environment yet struggle when faced with novel situations, a phenomenon
observed even in controlled benchmarks (Benhamou et al., 2021). In the context of financial markets, this
issue is acute: an agent trained on historical market data can easily overfit to past patterns and fail in new
market regimes (Charpentier et al., 2021; Cobbe et al., 2019). Traditional machine learning techniques
offer limited help here, as they typically assume independent and identically distributed data (Sutton &
Barto, 2018). Thus, developing DRL agents that can generalize beyond their training experience is of
paramount importance for reliable real-world deployment.

DR has emerged as a powerful technique to improve generalization by training agents on a diverse
ensemble of environments instead of a single fixed environment. The key idea is to systematically perturb
the training environment by randomizing key parameters within plausible ranges so that the agent learns
to handle a wide variety of situations (Sadeghi & Levine, 2017; Tobin et al., 2017). Introduced in the
context of sim-to-real transfer for robotics, DR was initially used to bridge the “reality gap” between
simulated training and the real world (Tobin et al., 2017). For example, Tobin et al. (2017) trained
vision-based object detectors and manipulation policies entirely in simulation by randomizing rendering
properties (textures, lighting, object positions, etc.), enabling the learned models to perform robustly
when exposed to real images. Similarly, Sadeghi & Levine (2017) showed that a drone navigation policy
trained with random variations in a simulated indoor environment (e.g., floor and wall textures, lighting
conditions, etc.) could generalize to real-world flight using only a single camera input, despite never
having seen real images during training.

These early successes demonstrated that exposing a DRL agent to sufficient variability in training
can make it invariant to irrelevant specifics of any single training instance, thereby improving its ability
to generalize. In essence, DR can be viewed as a form of implicit data augmentation for RL: instead
of augmenting input data as done in supervised learning, DR augments the environment’s dynamics
or observations. This approach has since been widely adopted in robotics and beyond. For instance,
randomizing physical parameters such as masses, friction coefficients, and joint tolerances in robotic
simulators forces control policies to become robust against modeling errors (Peng et al., 2018). Policies
trained with such dynamics randomization have been successfully transferred to real robots with minimal
fine-tuning, underscoring the efficacy of DR in handling discrepancies between training simulations and
complex reality (Akkaya et al., 2019; Peng et al., 2018). In computer vision, analogous ideas have also
been explored: generating synthetic training images with randomized backgrounds, object appearances,
and lighting has improved the robustness of vision models to real-world image variations (Tremblay
et al., 2018). Across these domains, the common thread is that diversity in training leads to more
generalizable learned representations. By preventing the agent from latching onto spurious details of
any single environment, DR encourages the learning of fundamental strategies that apply across varied
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conditions (Tobin et al., 2017). However, DR is only one approach to improving generalization. The
following section discusses several alternative techniques that researchers have explored to train more
robust DRL agents.

2.2. Alternative approaches to Domain Randomization

DR is one approach among several that have been proposed to enhance generalization in DRL. In this
section we briefly review other notable strategies like Ensemble Methods, Meta-Learning, Adversarial
Training, Regularization and Data Augmentation, and contrast them with DR:

2.2.1. Ensemble Methods

Ensemble learning improves robustness by training a collection of models and combining their decisions.
In DRL, this can mean learning an ensemble of policies or value functions that vote or average their
outputs (Lee et al., 2021; Osband et al., 2016). The diversity among ensemble members helps the overall
agent avoid overfitting to peculiarities of any single training run. For example, the SUNRISE framework
integrates an ensemble of Q-learning agents to achieve better generalization and higher performance on
continuous control tasks (Lee et al., 2021). Ensembles can also reduce estimation biases and stabilize
learning, which indirectly benefits generalization (Anschel et al., 2017).

Compared to DR (which varies environments for a single agent), ensembles increase robustness by
averaging over multiple agents trained on the same environment (or even on different randomized envi-
ronments). In practice, ensemble methods can be combined with DR by training each ensemble member
on different environment variations, thus combining their benefits.

2.2.2. Meta-Learning

Meta-learning (or “learning to learn”) trains agents that can rapidly adapt to new tasks or changes in
the environment by leveraging knowledge gained across many training tasks (Finn et al., 2017). In the
context of RL, meta-learning algorithms like Model-Agnostic Meta-Learning (MAML) (Finn et al., 2017)
or context-based approaches like PEARL (Rakelly et al., 2019) expose the agent to a distribution of
tasks/environments during training so that it acquires an internal mechanism to adapt to new, unseen
environments with minimal additional experience. For example, an agent might train on multiple sim-
ulated market scenarios with different dynamics; a meta-RL algorithm would encourage the agent to
infer the current scenario (perhaps through a latent context variable) and adjust its policy accordingly
(Benhamou et al., 2021; Rakelly et al., 2019).

Unlike DR, which learns a single policy that aims to be robust across all variations, meta-learning
explicitly trains the agent to adapt to variations. This can be advantageous in non-stationary settings:
rather than deploying one static policy to handle everything, the agent learns how to quickly tune its
policy to the prevailing conditions. Benhamou et al. (2021), for instance, utilize a context-based DRL
approach for portfolio management, where the agent’s policy includes an auxiliary network to detect
market regime changes (such as the onset of a crisis) and adjust its actions accordingly. Meta-learning
approaches can complement DR: an agent might be trained on randomized domains and also trained to
adapt its behavior based on clues (or context) from the environment about which domain is currently in
effect.
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2.2.3. Adversarial Training

Adversarial approaches improve generalization by preparing the agent for worst-case perturbations. In
robust adversarial RL, an auxiliary “adversary” is introduced during training to challenge the agent (Pinto
et al., 2017). The adversary may directly perturb the agent’s observations or actions, or manipulate the
environment within some bounds, with the goal of inducing agent failures. The RL agent, in turn, learns
to handle these adversarial interventions, resulting in a policy that is resilient to a range of difficult or
unforeseen conditions. Pinto et al. (2017) demonstrated this concept by training a robot control policy
in the presence of an adversarial force that pushed the robot; the resulting policy was significantly more
robust to disturbances than one trained under normal conditions.

In the financial domain, Spooner & Savani (2020) applied adversarial training by introducing an
adversary that perturbs market dynamics in a market-making simulation. The adversarial agent in their
setup would, for example, generate challenging price movement patterns or adversarial order flow, forcing
the trading agent to learn strategies that remain profitable under stress. This approach is akin to DR
in that it broadens the set of conditions the agent trains on; however, rather than random sampling
of conditions, it focuses on targeted worst-case scenarios. Adversarial training often yields very robust
policies, though potentially at the cost of some performance in nominal conditions, whereas plain DR
aims for a broad but not necessarily worst-case distribution of environments.

2.2.4. Regularization & Data Augmentation

Another line of defense against overfitting in DRL borrows techniques from supervised learning: adding
appropriate regularizers or noise during training to encourage the agent to learn more general features.
For example, weight decay (L2 regularization) and dropout have been applied to the neural networks of
DRL agents to prevent overly complex co-adaptations of neurons (Farebrother et al., 2018). Farebrother
et al. (2018) found that such regularization can modestly improve an RL agent’s ability to generalize to
new instances of Atari games by reducing overfitting to the training levels.

Data augmentation on the agent’s observations is another effective strategy, especially in vision-based
RL. Techniques like random image crops, flips, or adding Gaussian noise to observations have shown
improvements in generalization for video-game agents by training the policy on perturbed versions of the
original inputs (Laskin et al., 2020; Raileanu et al., 2021). In effect, these methods increase the diversity
of experience without altering the environment’s underlying dynamics.

Regularization and augmentation are typically easier to implement than DR since they do not require
designing a family of environment variations. However, they address only certain facets of generalization.
For instance, adding observation noise might make a trading agent’s policy robust to noisy price signals,
but it will not prepare it for a structural break in market dynamics. In contrast, DR (or adversarial
training) could simulate such structural breaks during training. In practice, a combination of these
techniques may be used: one could randomize market parameters (a form of environment augmentation)
while also applying, say, dropout in the policy network to tackle generalization from multiple angles.

2.2.5. Conclusion

Each of these generalization strategies has its merits, and they are not mutually exclusive. Ensemble
and Meta-Learning methods tend to require substantially more training (training multiple models or
an adaptive model), while Adversarial Training and DR demand careful design of perturbations to be
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effective yet realistic. Regularization-based methods are lightweight but might yield smaller gains.

DR stands out for explicitly tackling environment-driven uncertainty. By training on a broad distri-
bution of environments rather than a single one, it directly addresses the problem of environment shift.
Nevertheless, it is often beneficial to combine approaches (e.g., using dropout or ensembles in conjunction
with DR) to cover different sources of overfitting, potentially increasing performance.

2.3. Domain Randomization Applied to Financial Portfolio Management

Applying DR to financial portfolio management is a novel and promising idea, but it comes with unique
challenges. Financial markets can be viewed as complex, partially observable environments with evolving
dynamics, which makes them an ideal setting to benefit from DRL generalization techniques. To date,
however, the use of DR in finance remains relatively limited (Benhamou et al., 2021; Spooner & Savani,
2020). Most DRL-based trading systems are trained and tested on historical market data from a fixed pe-
riod or a particular market, which risks producing agents that perform well under those specific conditions
but fail to adapt when market characteristics change. There is a growing recognition that robustness to
regime changes and unexpected events is crucial for AI-driven portfolio management (Charpentier et al.,
2021). This has led researchers to explore methods for training agents that can handle different market
scenarios. For example, Z. Zhang et al. (2020) highlight the importance of training trading agents on
diverse market conditions (e.g., bull and bear markets) to enhance robustness. Likewise, Jiang et al.
(2017), Yang et al. (2020), and Ye et al. (2020) have demonstrated DRL approaches for portfolio alloca-
tion, but they primarily evaluate these methods in static historical backtests without explicit mechanisms
to ensure generalization across varying future market regimes.

DR offers a systematic way to inject variety into the training phase of a trading agent. In a financial
context, this could involve generating multiple market scenarios by perturbing key market parameters
and processes in a simulated environment. For instance, key elements for randomization include volatility,
jump frequency, asset correlation, and slippage patterns (Pinto et al., 2017). By training on an ensemble
of such simulated markets, the agent would learn investment strategies that are not tailored to one specific
history but are resilient across many plausible futures. This approach is conceptually similar to the stress
testing or scenario analysis used in quantitative finance, where models are evaluated on hypothetical
extreme conditions; however, with DRL one can incorporate these scenarios directly into the training
loop.

Recent work by Wang et al. (2021) has begun to investigate different randomization strategies in mar-
ket environments, showing that the way randomness is introduced (e.g., perturbing historical data with
noise vs. drawing synthetic samples from a generative model) can significantly affect the learned policy’s
performance and stability. Although comprehensive studies are still lacking, these early explorations
suggest that DR could help trading agents learn regime-agnostic policies that maintain performance even
as market dynamics evolve. Despite its promise, adapting DR to finance faces several limitations and
open research gaps. First, unlike in robotics or games, we do not have a perfect simulator of “market
physics”—financial simulators are at best approximate. Randomizing a flawed simulator could produce
training data that diverges too much from reality, potentially confusing the agent.

Designing realistic yet diverse market randomizations is an art in itself: one must ensure the random
scenarios are plausible representations of how real markets might behave. If the randomization is too
mild, the agent may still overfit to narrow conditions; if it is too wild, the agent might learn strategies
that work in simulation but not in actual markets. Identifying which parameters to randomize (e.g.,
the sequence of market news events, the degree of mean reversion, the frequency of market crashes) is a

13



non-trivial task requiring financial expertise. Moreover, financial time series have memory and heavy-tail
risks that are harder to capture with simple parametric randomization. Current research is beginning
to explore the use of generative models (e.g., market scenario generators using GANs) to produce more
realistic random market environments, but integrating these into DRL training is still nascent.

Another challenge is evaluation: in robotics, a policy can be tested on a real robot to judge sim-to-real
success. In finance, deploying an unproven policy on live markets is risky and costly. Thus, we rely on
historical out-of-sample testing, but truly unseen market conditions may not exist in past data. This
makes it difficult to objectively quantify how well DR improves generalization for trading agents. Some
researchers address this by using split-by-time evaluations—training on one period and testing on a later
period that includes different market regimes (Benhamou et al., 2021). If an agent trained with DR
can adapt to the later period’s regime shifts better than a conventionally trained agent, that provides
evidence of improved generalization.

So far, approaches to achieve generalization in financial DRL have more often relied on alternative
strategies like robust training and meta-learning rather than on explicit DR. Benhamou et al. (2021),
as mentioned earlier, incorporate context detection to help the agent handle crises, effectively adding an
adaptive component to the policy. Spooner & Savani (2020) introduce an adversarial agent to stress-test
a trading strategy during training, yielding a more robust market-making agent. These studies confirm
the value of training-time interventions to improve out-of-sample performance. They also underscore a
gap: DR remains relatively underexplored in the context of financial applications. No widely cited study
yet provides a systematic assessment of DR for portfolio management, which is precisely the gap this
work aims to fill.

In summary, DR holds significant potential for advancing the state of the art in DRL for portfolio
management. By learning from a breadth of simulated market conditions, a DRL agent could, in theory,
internalize a strategy that works in calm markets, volatile crashes, and everything in between. Achieving
this in practice will require careful design of randomization schemes—possibly hybridized with other
generalization techniques (ensembles, meta-learning, etc.)—to ensure realism and effectiveness. The
current literature provides encouraging hints but also makes it clear that more research is needed. Key
open questions include: How can we generate realistic yet diverse market scenarios for training? What
aspects of market behavior should be randomized versus kept historical? How should improvements in
generalization be measured quantitatively? Addressing these questions will be crucial for bringing the
benefits of DR to financial DRL. The work reviewed above provides a strong foundation and motivation to
pursue these issues, suggesting that a well-crafted DR approach could substantially enhance the robustness
and adaptability of DRL-based portfolio managers.
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3. Scope of the Study & Reach

This section defines the scope of the study conducted on the use of DR in DRL agents for financial portfolio
management and its reach. It presents the specific experimental objectives, the working hypotheses, and
the limitations of the experimental setup that contextualize the obtained results.

3.1. Experimental Objectives

This work investigates whether DR can help DRL agents generalize beyond historical financial data.
A key challenge in financial DRL is overfitting to past market conditions, as agents trained on static
histories often struggle with regime shifts (Charpentier et al., 2021; Cobbe et al., 2019).

We aim to quantitatively assess whether a DRL agent trained with DR yields higher Sharpe ratios (a
standard measure of risk-adjusted returns) than an agent trained on fixed historical data. The objectives
that we will follow are:

a) To determine whether DR leads to higher Sharpe ratios (Sharpe, 1966) compared to historical-only
training.

b) To evaluate the consistency of DR improvements by examining mean, upper-quartile, and maximum
performances.

c) To statistically validate whether observed differences are significant using hypothesis testing or if
these are due to chance.

3.2. Hypotheses

We define three hypotheses designed to capture different dimensions of improvement, thereby allowing
for a nuanced evaluation of whether DR provides statistically significant advantages over conventional
historical training, and if so, to what degree:

• H1 ⇒ Best-case improvement: The best Sharpe ratio from the 25 DR agent runs is greater
than that of the historically trained agent:

H0 : max[SharpeDR] ≤ µ[Sharpehist]

H1 : max[SharpeDR] > µ[Sharpehist]
(1)

• H2 ⇒ Consistency (Q3): The 75th percentile (Q3) of the DR agent runs is greater than that
of the historically trained agent:

H0 : Q3[SharpeDR] ≤ µ[Sharpehist]

H1 : Q3[SharpeDR] > µ[Sharpehist]
(2)

• H3 ⇒ Mean superiority: The mean Sharpe ratio of the DR agent runs is greater than the mean
of the historical runs:

H0 : µ[SharpeDR] ≤ µ[Sharpehist]

H1 : µ[SharpeDR] > µ[Sharpehist]
(3)
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3.3. Assumptions of the Experimental Setup

This section outlines the assumptions underlying the experimental setup. These assumptions are not
expected to significantly affect the replicability of results when modified.

a) Data assumptions: All training and test data are derived from the same underlying financial
dataset, which may limit generalizability to other assets or time periods (Wang et al., 2021).

b) Algorithmic assumptions: Even though different algorithms could be applied, the core findings
are not expected to change significantly.

c) Model assumptions: Even though different models could be applied, the core findings are not
expected to change significantly.

3.4. Limitations of the Experimental Setup

This section outlines the limitations of the experimental setup. These factors may affect the interpretabil-
ity and generalizability of the findings; and should be carefully considered when evaluating the robustness,
replicability, and applicability of the results.

a) Computational constraints: Only 25 runs per condition were executed due to limited computa-
tional resources. Larger sample sizes would improve the power of the statistical tests.

b) Simplified DR: The DR procedure uses a limited set of features (e.g., price dynamics, volatility,
etc.) and may not capture the full complexity of financial markets (Benhamou et al., 2021).

c) Evaluation metric: Only Sharpe ratio is considered. Other metrics such as maximum drawdown
or Sortino ratio could complement the analysis (H. Park et al., 2020).

d) Model tuning: The agent architecture and hyperparameters were not fully optimized. More
sophisticated tuning (e.g., Bayesian optimization) could yield better results (Garrido-Merchán,
2025).

Despite these limitations, the experimental setup offers valuable preliminary evidence on the potential
of DR to enhance the generalization capabilities of DRL agents in financial portfolio management, thereby
contributing to more robust and effective investment strategies.
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4. Theoretical Framework & Methodology

In this section, we provide the theoretical foundations and methodological tools underpinning our study.
The aim is to contextualize the strategies explored in the following chapters within established financial
theory and to explain the analytical techniques used for model development and evaluation.

4.1. Technical Analysis & Portfolio Management

Financial trading encompasses two major problem domains: the identification of profitable trading signals
and the optimal allocation of assets in a portfolio. The former is the focus of technical analysis, while
the latter falls under portfolio management. In this subsection, we outline key principles of each domain,
highlighting their theoretical underpinnings and the challenges they present in the context of developing
quantitative trading strategies.

4.1.1. Technical Analysis

Technical analysis refers to forecasting future price movements based on patterns and trends in historical
market data. It relies on the premise that past trading information (price and volume) contains signals
about future dynamics, in contrast to fundamental analysis which examines economic and financial indi-
cators of an asset. Technical analysis has been part of trading practice for decades (Lo et al., 2000), and
it remains widely used among market practitioners. For instance, Menkhoff (2010) reports that 87% of
surveyed fund managers incorporate technical analysis into their decision-making process, particularly for
short-term investment horizons. The appeal of technical analysis lies in its attempt to identify recurrent
market patterns (such as trends or momentum) that can inform buy or sell decisions.

At the core of technical analysis is the time series of five key data points recorded for each period:
the open, high, low, close, and volume (OHLCV). For each time interval t, the open price Ot is the first
traded price, and the close price Ct is the last traded price in that period. The high Ht and low Lt

denote the extreme upper and lower prices achieved during the interval. The volume Vt represents the
total number of units traded in period t, capturing the level of market activity and liquidity. Together,
these OHLCV elements provide a comprehensive snapshot of market behavior for each period, serving as
the raw input for both visual charting and quantitative technical indicators.

Figure 1 illustrates the relationship between a time-series line chart (left) and its corresponding OHLC
bar representation (right). On the left, we observe a stylized price trajectory highlighting the Open,
High, Low, and Close points across a hypothetical time window. On the right, price level points across
a hypothetical time window are encoded in a compact OHLC bar format. These are commonly used in
technical analysis to visualize price movement per period.

Time

Price

Open

High

Low

Close

High

Close

Open

Low

Figure 1: Line chart (left) and its corresponding OHLC bar representation (right).
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From OHLC prices, analysts frequently derive synthetic variables such as the Range, which captures
intraperiod price dispersion by subtracting the Low to the High:

Ranget = Ht − Lt (4)

Another widely used metric is the Typical Price (TP for short), which sums up High, Low, and Close;
and then divides that number by 3:

TPt = Ht + Lt + Ct

3 (5)

In other cases, a weighted version using V olume, such as the Volume Weighted Average Price (VWAP
for short), where Pi and Vi represent transaction Price and V olume, respectively, across Nt trades in
period t:

VWAPt =
∑Nt

i=1 PiVi∑Nt

i=1 Vi

(6)

The Volume Weighted Average Price metric is widely used as a benchmark for trade execution and
intraday price analysis (Berkowitz et al., 1988).

In summary, OHLCV data forms the foundational input for nearly all of technical analysis (Murphy,
1999). It supports both visual inspection, through the identification of chart patterns such as candlestick
formations, support and resistance levels, and trend lines, as well as the systematic computation of a wide
range of technical indicators. These include momentum indicators (e.g., RSI, MACD), trend-following
tools (e.g., moving averages, ADX), and volatility measures (e.g., Bollinger Bands, ATR). By capturing
essential market microstructure—price extremes, directional movement, and trading volume—OHLCV
data enables analysts and algorithmic systems alike to extract insights about market sentiment, trend
strength, and potential reversals.

In practice, traders employ a variety of technical indicators and chart patterns to generate trading
signals. These include trend-following indicators (e.g., moving averages), oscillators (e.g., the Relative
Strength Index), and specific price patterns (e.g., head-and-shoulders formations). For example, a Simple
Moving Average (SMA for short) of price P over N days is defined as follows:

SMAN (t) = 1
N

N−1∑
i=0

Pt−i (7)

A widely used trading strategy involves comparing a short-term and a long-term SMA to detect shifts in
market momentum. Specifically, a “golden cross” occurs when the short-term SMA (e.g., 50 days) crosses
above the long-term SMA (e.g., 200 days), indicating a transition from a bearish (i.e. the prospect of
prices to fall) to a bullish (i.e. the prospect of prices to rise) trend. This crossover is interpreted as a strong
signal of upward momentum, suggesting that recent price gains may continue, and is therefore commonly
used by traders as a cue to initiate long positions. Conversely, a “death cross”—when the short-term
SMA falls below the long-term SMA—is typically viewed as a bearish signal, prompting caution or the
consideration of short positions.

The effectiveness of technical analysis has been a subject of considerable debate in finance. The weak-
form Efficient Market Hypothesis (EMH for short) asserts that asset prices already reflect all information
contained in past prices, implying that no trading rule based solely on historical data can consistently
yield excess profits (Fama, 1970). Nevertheless, numerous studies have found evidence of predictability in
asset returns that technical strategies can exploit. Brock et al. (1992), in an influential study, showed that
simple technical rules (such as moving-average and trading-range break-out strategies) applied to U.S.
stock market data produced returns significantly better than chance. More recent work by Lo et al. (2000)
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applied rigorous statistical pattern-recognition algorithms to identify classic chart formations (e.g., head-
and-shoulders or double bottoms) and found that several of these patterns had modest but statistically
significant predictive power. Additionally, C.-H. Park & Irwin (2007) provide a comprehensive review of
95 empirical studies of technical trading strategies, of which roughly 56% report positive net profitability
after accounting for transaction costs and other factors. Such findings suggest that markets are not
perfectly efficient in the weak form, and that carefully designed technical trading rules can sometimes
achieve above-average risk-adjusted returns.

However, technical analysis faces the following important challenges: patterns that worked in the
past may weaken or disappear as market regimes change or as more traders recognize and trade on them,
thus diminishing their profitability (C.-H. Park & Irwin, 2007); and there is also a risk of overfitting-
discovering spurious patterns in historical data that do not generalize to future periods (Bailey et al.,
2014). Consequently, successful technical trading requires continual adaptation and robust validation to
ensure that identified signals have genuine predictive value and are not merely artifacts of noise.

In summary, technical analysis provides a framework for decision-making based on market price
behavior. It frames trading as a sequential decision problem: at each time step, the trader interprets the
latest price information (through the lens of technical indicators) and must decide whether to buy, sell, or
hold. The inherently dynamic and data-driven nature of this process makes it amenable to quantitative
modeling approaches.

4.1.2. Portfolio Management

Portfolio management is concerned with the optimal allocation of wealth across multiple assets to balance
return and risk. Unlike technical analysis, which often focuses on timing trades for a single asset, portfolio
management considers a broader investment context: “how to construct and adjust a collection of assets
(i.e. a portfolio) to meet an investor’s objectives”.

The cornerstone of modern portfolio management is Markowitz’s Modern Portfolio Theory (MPT for
short). In his seminal paper, Markowitz (1952) formalized the mean-variance optimization framework,
which quantifies the trade-off between expected return and risk (which is measured as the variance of
portfolio returns). Investors aim to maximize returns for a given level of risk or, conversely, to minimize
risk for a target level of return. This can be expressed as the following optimization problem:

min
w

w⊤Σw

s.t. w⊤1 = 1

w⊤µ = RT

(8)

where w = (w1, . . . , wn)⊤ is the vector of portfolio weights for n assets, Σ is the n × n covariance
matrix of asset returns, µ is the vector of expected returns, and RT is a target portfolio return. The
first constraint ensures the weights sum to one (full investment of capital), and the second constraint
fixes the portfolio’s expected return to RT . Solving this optimisation for different values of RT yields a
set of optimal portfolios that delineate the efficient frontier. The efficient frontier represents the set of
portfolios offering the highest expected return for each level of risk; portfolios lying below this frontier
are suboptimal because they achieve lower returns for the same risk.

Building on MPT, the Capital Asset Pricing Model (CAPM for short) introduced by Sharpe (1964)
further characterizes the relationship between risk and expected return in equilibrium. CAPM posits that
if investors optimize portfolios according to mean-variance principles, the market portfolio (representing
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the aggregate of all assets) will be on the efficient frontier, and asset prices will adjust such that only
systematic risk influences expected returns. In the CAPM formulation, the expected return of asset i is
linear in its beta (βi), which measures the asset’s co-movement with the market:

E[Ri] = Rf + βi

(
E[Rm]−Rf

)
(9)

with βi = Cov(Ri, Rm)
Var(Rm) , where Rf is the risk-free interest rate, E[Rm] is the expected return of the

market portfolio, and E[Rm]− Rf is the market’s expected excess return (or risk premium). According
to the CAPM, an asset with βi = 1 should have an expected return equal to the market average, while an
asset with βi > 1 should earn above-average returns at the cost of a higher systematic risk, and an asset
with βi < 1 should earn lower returns but with a lower systematic risk. Idiosyncratic risk (i.e. risk unique
to a single asset) is not rewarded because it can be eliminated through diversification. Although empirical
tests have exposed limitations of the CAPM and led to the development of multi-factor extensions (e.g.,
Fama & French, 1993), it remains a fundamental framework for understanding risk-return trade-offs.

Another important aspect of portfolio management is performance evaluation and risk control. A
widely used performance metric is the Sharpe ratio (Sharpe, 1966), which measures risk-adjusted return.
The Sharpe ratio S for a portfolio p is defined as follows:

S = E[Rp −Rf ]
σp

(10)

where Rp is the portfolio return, Rf is the risk-free rate, E[Rp − Rf ] is the expected excess return, and
σp is the standard deviation of the portfolio’s return. A higher Sharpe ratio indicates a more attractive
portfolio on a risk-adjusted basis, as it delivers greater excess return per unit of volatility. Portfolio
managers often seek to maximize the Sharpe ratio when selecting investments or adjusting portfolio
weights, subject to constraints such as liquidity and regulatory requirements.

In practice, portfolio management is a dynamic process rather than a one-time calculation. Market
conditions and asset characteristics (expected returns, volatilities, correlations, etc.) change over time,
so a portfolio that is optimal today may not remain optimal in the future. Investors typically rebalance
their portfolios periodically or in response to significant market moves, engaging in sequential decision-
making under uncertainty. The portfolio manager must continuously decide how to adjust holdings to
respond to new information, manage risk exposures, and exploit emerging opportunities. Thus, effective
portfolio management demands not only an optimal initial allocation but also a robust strategy for
ongoing adjustments as conditions evolve.

4.1.3. Conclusion

Overall, technical analysis and portfolio management together encompass the key decision-making chal-
lenges in quantitative finance. Both involve sequential choices under uncertainty—whether it is timing
individual trades or continuously reallocating assets—that require balancing potential returns against
risks. These characteristics motivate the need for sophisticated, data-driven methods capable of learning
and adaptation, which we explore in the subsequent part of this methodology.
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4.2. Methodology

In this section we outline the methodology employed in this work, which is divided in: a) the introduction
of the general framework of DRL, which serves as the foundation for our trading agent; b) the use of the
DDPG algorithm, a popular actor-critic method well-suited for continuous action spaces; and c) the DR
strategy used to enhance the agent’s generalization by exposing it to diverse training environments.

4.2.1. Deep Reinforcement Learning

RL provides a framework for sequential decision-making in which an agent learns to maximize cumulative
rewards by interacting with an environment (Sutton & Barto, 2018). Formally, the problem is modeled
as a Markov Decision Process (MDP), defined by the tuple (S,A, P, R, γ), where S is the state space,
A is the action space, P (s′ | s, a) defines the transition probabilities, R(s, a) is the reward function, and
γ ∈ [0, 1) is a discount factor. At each time step t, the agent observes a state st ∈ S, selects an action
at ∈ A according to its (possibly stochastic) policy π(at | st), and receives a reward rt = R(st, at). The
system then transitions to a new state st+1 with probability P (st+1 | st, at). The goal of RL is to learn
an optimal policy π∗ that maximizes the expected cumulative discounted reward from each initial state.
This expected return can be written as:

J(π) = Eπ

[ ∞∑
t=0

γtrt

∣∣∣∣∣ s0 = s

]
(11)

where the expectation is taken over trajectories generated by following policy π from initial state s (Sutton
& Barto, 2018). An optimal policy π∗ maximizes J(π) for all reachable states. In practice, solving for π∗

exactly is intractable for large or continuous state spaces, so agents resort to iterative learning algorithms
that improve the policy based on observed experience.

DRL refers to the class of RL methods that leverage deep neural networks as function approximators
for the policy πθ(a|s) or value functions (e.g. the state-value V (s) or action-value Q(s, a)), allowing
the agent to handle high-dimensional state inputs and complex non-linear decision boundaries (Lillicrap
et al., 2016; Mnih et al., 2015). By using neural networks, DRL algorithms can generalize across states
and learn directly from raw inputs such as price series or technical indicators, which is crucial in domains
like finance where the state space (historical market data, technical features, etc.) can be very large.

Figure 2, illustrates the DRL process in which the agent continually interacts with the market envi-
ronment in a closed loop and learns employing Deep Neural Networks (DNNs):

Figure 2: DRL architecture (Kabir et al., 2023).

As shown in Figure 2, in each decision interval, the agent observes the current market state (e.g.,
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recent price changes, indicators, portfolio holdings), executes a portfolio action (reallocating weights
among assets), and then receives a reward signal reflecting the quality of that action (for instance, the
resulting portfolio return or a risk-adjusted profit). Through repeated interactions, the agent adjusts its
policy to favor actions that yield higher long-term returns.

In the portfolio management setting, a typical state st may consist of features such as recent asset
prices, returns, technical indicators, and possibly the agent’s current portfolio allocation (Jiang et al.,
2017; Ye et al., 2020). An action at is a vector of portfolio weight adjustments or asset trades, essentially
specifying how to redistribute capital among the assets at time t. The reward rt can be defined in various
ways, but a common choice is the change in portfolio value (e.g., log return of the portfolio for that
interval) minus any transaction costs (Yang et al., 2020; Z. Zhang et al., 2020). The agent’s goal is to
learn a trading strategy (policy) that maximizes the expected cumulative reward, which in this context
translates to maximizing investment returns while implicitly handling risk through the reward design
(e.g., using risk-adjusted returns or penalties for large drawdowns).

According to Sutton & Barto (2018), DRL algorithms can be broadly categorized into the following
three categories: a) value-based methods, b) policy-based methods, and c) actor-critic methods:

a) Value-based approaches, such as Deep Q-Networks by Mnih et al. (2015), learn an approximate
Q-function and derive a policy by selecting actions that maximize Q(s, a). However, pure value-
based methods struggle with continuous action spaces because finding the action that maximizes
Q(s, a) requires optimization in continuous domains.

b) Policy-based methods, such as REINFORCE by Williams (1992), directly optimize the policy
by gradient ascent on J(π), and can naturally handle continuous actions by parameterizing the
policy πθ(a|s) (e.g., as a Gaussian). They can suffer from high variance in gradient estimates and
typically require careful tuning.

c) Actor-critic methods combine both approaches by maintaining an explicit policy (the actor) and
a value function (the critic) to critique the actor’s decisions, thereby reducing variance while provid-
ing guidance to the policy updates. The actor-critic framework is well-suited for continuous control
problems and has shown strong performance in many domains (Lillicrap et al., 2016; Schulman
et al., 2015).

In this work, we adopt an actor-critic DRL algorithm for portfolio management, which we detail next.
Specifically, we use the DDPG algorithm as our learning backbone, due to its ability to handle continuous
action spaces and its sample-efficient, off-policy learning characteristics.

4.2.2. Deep Deterministic Policy Gradient

DDPG is an off-policy, model-free, actor-critic DRL algorithm that was introduced by Lillicrap et al.
(2016) to enable effective learning in continuous action spaces. It can be viewed as an extension of Deep
Q-learning by Mnih et al. (2015) combined with the Deterministic Policy Gradient (DPG) framework
provided by Silver et al. (2014).

In DDPG, the actor is a neural network µ(s|θµ) that deterministically maps states to a specific action
(hence “deterministic” policy), and the critic is a neural network Q(s, a|θQ) that approximates the action-
value function (i.e., the expected return from state s after taking action a and thereafter following the
current policy). The critic provides feedback to improve the actor.

As shown in Figure 3, both networks interact in an iterative training cycle: the actor proposes actions
and the critic evaluates them, while both are updated based on experience data:
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Figure 3: DDPG architecture (H. Zhang et al., 2022).

The training procedure of DDPG can be articulated through the following five systematic sequence
of steps that capture the essence of its actor-critic learning framework:

1. Initialize the primary networks Q(s, a|θQ) and µ(s|θµ) with random weights, and create target
networks Q′ and µ′ with identical initial weights (θQ′ ← θQ) and (θµ′ ← θµ).

2. Initialize an experience replay buffer D to store transitions (st, at, rt, st+1).

3. For each training time step t:

• Observe the current state st.
• Select the action at = µ(st|θµ) +Nt, where Nt is exploration noise.
• Execute action at in the environment, receive reward rt and next state st+1.
• Store transition (st, at, rt, st+1) in D.

4. When enough experience is collected:

• Sample a mini-batch {(si, ai, ri, s′
i)}N

i=1 from D.
• Compute target values:

yi = ri + γ Q′(s′
i, µ′(s′

i|θµ′
)
)

(12)

• Update the critic by minimizing:

L(θQ) = 1
N

N∑
i=1

(
yi −Q(si, ai | θQ)

)(13)

• Update the actor using:

∇θµJ ≈ 1
N

N∑
i=1
∇aQ(si, a | θQ)

∣∣
a=µ(si) · ∇θµ µ(si|θµ) (14)
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5. Update target networks via Polyak averaging:

θQ′
← τθQ + (1− τ)θQ′

θµ′
← τθµ + (1− τ)θµ′ (15)

In the domain of financial portfolio management, the DDPG algorithm presents a number of distinct
advantages over traditional RL methods:

a) Being an off-policy algorithm, it can leverage past experiences effectively and is not constrained to
follow its current policy when gathering data, which is useful when using historical market data
that can be re-sampled or replayed for training.

b) The continuous action output µ(st) naturally fits the portfolio allocation problem, as it can represent
a continuous vector of asset weights.

c) Constraints such as budget limits or no-short-selling can be incorporated by choosing appropriate
action parameterizations.

d) The critic in turn learns to evaluate the quality of a given allocation by estimating the expected
future returns (or other long-term performance measures) from that state-action pair.

e) Due to its model-free nature, it does not require an explicit model of market dynamics, it learns
directly from observations of price movements and rewards, thus making it flexible.

However, it is important to recognize that in stationary or narrowly defined training environments, agents
based on the DDPG algorithm are susceptible to overfitting. This overfitting can significantly hinder the
agent’s ability to generalize to unseen market conditions. To address this limitation, our work incorporates
DR into the training process.

4.2.3. Domain Randomization

DR is a training technique whereby one deliberately introduces variability or noise into the simulation
environment’s parameters in order to expose the learning agent to a wide range of scenarios (Sadeghi &
Levine, 2017; Tobin et al., 2017). The key idea is that by experiencing many diverse environments in
simulation, the agent learns a policy that is not tailored to any single environment configuration, and thus
the policy is more likely to generalize robustly to new, unseen conditions. In the context of DRL, this
approach addresses the well-known generalization problem: agents trained on a fixed environment often
overfit to its particular dynamics and can falter when conditions change even slightly (Cobbe et al., 2019).
By contrast, an agent trained with DR is constantly forced to adapt to varied conditions, preventing it
from relying on brittle heuristics that only work in one specific scenario.

In practice, DR involves defining a set of environment parameters to randomize, along with plausible
ranges or distributions for these parameters, and then sampling a new configuration from these distri-
butions for each training episode (or periodically during training). This concept was first popularized in
robotic simulation-to-real transfer. For example, Tobin et al. (2017) randomized visual attributes (tex-
tures, lighting, colors, object positions, etc.) in a simulator so that a vision-based robotic policy could
better handle the gap between simulation and reality. Similarly, Sadeghi & Levine (2017) showed that
randomizing camera angles and scene appearance enabled a drone’s navigation policy to transfer to the
real world without any real-world training. Beyond vision, other works randomize physical dynamics:
Peng et al. (2018) and Pinto et al. (2017) varied physics parameters like masses, friction coefficients,
and forces during training, which yielded agents that are more robust to modeling errors and changing
real-world conditions. These studies demonstrated that DR can effectively act as a form of implicit data
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augmentation for RL, injecting a form of structured noise into the training process that encourages the
emergence of more general strategies.

Applying DR to financial portfolio management entails perturbing the simulated market environment
in structured ways. In a financial simulator, we can identify key market parameters and mechanisms
that, if varied, lead to different market behaviors. For instance, one can randomize:

a) The asset price dynamics, by sampling model parameters for returns (e.g., randomly adjusting drift
and volatility in a stochastic price model, or shuffling/corrupting historical price sequences with
noise).

b) The volatility structure, by introducing volatility regimes or shocks at random intervals (simulating
calm markets vs. turbulent periods).

c) The correlation structure between assets, by randomly altering cross-asset correlations or covari-
ances in the return generation process.

d) The transaction cost and market microstructure properties, by varying the bid-ask spread, slippage,
or delay in trade execution in the simulator.

Each training episode can sample a different combination of these factors. For example, one episode might
simulate a bullish market with low volatility and low transaction costs, while the next episode simulates
a sideways market with occasional price jumps and higher trading frictions. By cycling through many
randomized market scenarios during training the DRL agent is prevented from over-specializing to any
specific market condition.

In our implementation, we integrate DR into the training loop of the DDPG agent. At the beginning of
each training episode, a new set of market parameters is drawn. Concretely, we define a parameter space Θ
(volatility scale, reward distribution skew, cost multiplier, etc.), and for each episode we sample θ ∼ p(Θ)
from predefined distributions. The environment is then configured according to θ for the duration of that
episode. The DRL agent (DDPG) trains on this episode, then in the next episode a new θ′ is sampled,
and so on. Over many episodes, the agent sees a wide variety of market behaviors. This procedure can be
seen as training on a distribution of environments E(θ) rather than a single environment E0. Crucially,
the randomization is structured and not purely arbitrary: the ranges of parameters p(Θ) are chosen to
reflect plausible real-world conditions, so that every randomized scenario remains realistic (albeit possibly
extreme). This ensures that the agent’s training experiences cover not only typical market variations but
also rare or extreme events, which is important for financial risk management. Intuitively, DR serves a
similar role as data augmentation in supervised learning; by widening the training distribution, we aim
to make the learned policy invariant to irrelevant variations and robust to perturbations. By training
with DR, the agent effectively “stress-tests” its strategy under many different scenarios during learning,
which should improve its resilience. The expectation is that when deployed in the real market (which
can be seen as yet another drawn scenario), the agent will handle it better because it has seen analogues
of many different market conditions during training.

This approach directly tackles the generalization challenge identified in the literature: real financial
markets are non-stationary and can undergo regime shifts that a static-trained agent would not anticipate
(Charpentier et al., 2021; Cobbe et al., 2019). Indeed, previous research has noted that DRL agents
trained only on historical market data often lack the ability to adapt to new market regimes (Wang
et al., 2021). DR provides a systematic way to inject anticipated uncertainty into the training phase.
Recent studies in quantitative finance are beginning to explore this idea. For example, Spooner & Savani
(2020) propose training trading agents on multiple synthetic market scenarios to improve robustness, and
Benhamou et al. (2021) suggest that training under varied market conditions can yield strategies that
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maintain performance in volatile periods. However, the use of DR in finance is still nascent, and our
work contributes to this emerging area by providing a concrete implementation and empirical evaluation
of DR for financial portfolio management.

In summary, DR acts as a form of regularization for DRL agents, promoting the learning of strategies
that generalize across environments. In the following sections, we will evaluate how incorporating DR
influences the performance and generalization of our DDPG-based trading agent, comparing DR training
against conventional training on fixed historical data.
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5. Experimental Design & Results

In this section, we detail the experimental design implemented to rigorously evaluate the proposed
methodology. This framework ensures reproducibility and enables a comprehensive assessment of model
performance. The subsequent results provide quantitative and qualitative insights into the effectiveness
of our approach.

5.1. Experimental Design

The experimental design focuses on optimizing DRL agents for stock trading using the FinRL framework.
Historical market data for the 30 Dow Jones stocks is collected and preprocessed to serve as the envi-
ronment for training. The experiment leverages Optuna to systematically tune model hyperparameters,
with each trial maximizing a trade-based metric (the ratio of average winning to losing trade value).
Agents are trained and evaluated across multiple trials, ensuring a robust and reproducible evaluation of
hyperparameter impact on trading results, a t-test is then applied to compare the results of the agents
that use DR and those who don’t.

5.1.1. Data Collection & Preparation

For this study, historical financial data was collected for the 30 constituent stocks of the Dow Jones Indus-
trial Average, ensuring a diverse and representative sample of the U.S. equity market. Data acquisition
was performed using the Yahoo Finance API, facilitated by the FinRL framework’s YahooDownloader
utility, which allows for the efficient retrieval of daily price data, including OHLCV information.

5.1.2. Experimental Setup

The experimental environment simulates a stock trading scenario using historical market data from the
Dow Jones Industrial Average. We implement the environment where an agent interacts with a dynamic
portfolio allocation task across 30 assets. To evaluate the impact of DR, we define the following two
training conditions:

a) Baseline (i.e. without DR): The agent is trained solely on fixed historical data without any
modifications or stochastic perturbations.

b) DR: The agent is trained on a randomized environment in which key components are perturbed
across episodes. Specifically, we apply randomization injecting Gaussian noise to simulate uncer-
tainty in asset prices.

Both baseline and DR agents are trained using the same architecture and hyperparameter search space.
The only difference between them lies in the nature of the environment they are exposed to. This design
enables us to isolate the effect of DR on the agent’s performance and generalization ability. All other
factors like data sampling, model architecture, and training budget are held constant.

5.1.3. Training Phase

During the training phase, each agent is initialized and trained independently within the multi-asset trad-
ing environment, employing the DDPG algorithm. The agent interacted with the simulated environment
by observing state representations derived from the engineered features and making sequential portfolio
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allocation decisions. Throughout training, the agent’s objective was to maximize a predefined reward
function based on the Sharpe ratio (Sharpe, 1966).

5.1.4. Evaluation Metrics

To ensure statistical validity and robustness of the results, the experimental design incorporates 25
independent observations for each experimental setting. For each observation, 10 DRL agents are trained
and evaluated, with the resulting Sharpe ratios (Sharpe, 1966) aggregated to obtain three summary
statistics: the maximum Sharpe ratio, the third quartile, and the mean Sharpe ratio. As explained in
the section corresponding to the scope and reach of the study, the analysis involves a total of three
comparative assessments to evaluate the effectiveness of DR:

a) The maximum (H1) Sharpe ratio obtained across the 10 agents for each observation with DR is
compared to the mean Sharpe ratio from the corresponding non-DR baseline.

b) The third quartile (H2) of the Sharpe ratios under DR is compared to the mean of the Sharpe
ratios without DR.

c) The average (H3) Sharpe ratio with DR is evaluated against the baseline Sharpe ratio.

These comparisons collectively provide insight into the benefits of DR not only in terms of peak agent per-
formance but also in improving the distribution and average quality of trading outcomes, thus illustrating
the different levels of achievement that these can reach.

5.1.5. Hypothesis Testing

To ensure statistical validity, we perform hypothesis testing to evaluate the effect of DR. All experiments
use the Sharpe ratio (Sharpe, 1966) as the performance metric, evaluated on a fixed test set. A total of
25 independent training runs are conducted for each condition (with DR and without DR). A two-sample
t-test is used to compare the mean Sharpe ratios. We employ the one-sided (right-tailed) t-test formula:

t = µx − µ0
s√
n

(16)

Welch’s correction is applied in cases where the assumption of equal variances is violated (Welch, 1947);
similarly, the non-parametric Mann-Whitney U test is implemented when the assumption of statistical
normality is not met (Mann & Whitney, 1947).

5.1.6. Confidence Intervals

The tests are one-sided (i.e. right-tailed) and conducted at a rigorous 1% significance level (α = 0.01),
which is justified given the nature of the experiment and the increased likelihood of Type I errors due to
multiple comparisons and stochastic variability (Kim, 2015).

5.2. Results

In this section, we present the outcomes of the experimental procedure described above. The results
highlight the comparative performance of agents trained with and without DR, evaluated through financial
metrics and statistical significance tests. We calculate the Baseline Agent Sharpe Ratio, then we calculate
the recorded Sharpe Ratios of the 10 agents for each of the 25 observations, and afterwards we perform

28



a one-sided t-test. This analysis serves to quantify the impact of DR on agent robustness and trading
effectiveness.

5.2.1. Baseline Sharpe Ratio (without DR)

The Baseline Sharpe Ratio recorded for the DRL agent without injecting any noise perturbation, stochas-
ticity or DR. We will use this value as a reference point to assess the potential improvement introduced
by incorporating DR during the training phase.

Baseline Agent
Sharpe Ratio 1.601392

Table 1: Baseline Sharpe Ratio (without DR)

5.2.2. Sharpe Ratios employing Domain Randomization

The Sharpe ratios recorded for the 10 agents in their 25 observations are summarized in the following
table according to the metrics previously discussed:

H1 H2 H3
Experiment nº max[SharpeDR] Q3[SharpeDR] µ[SharpeDR]

1 1.863253 1.732702 1.606896
2 2.006231 1.855320 1.765119
3 1.872960 1.788143 1.659716
4 1.832878 1.746652 1.626307
5 1.970346 1.849455 1.757641
6 1.913919 1.803041 1.617699
7 2.034160 1.827360 1.630844
8 1.911241 1.748060 1.689416
9 1.742590 1.617830 1.548108
10 1.726062 1.671880 1.553235
11 2.019963 1.767428 1.723631
12 1.768805 1.732181 1.703302
13 1.900987 1.730282 1.694839
14 1.953399 1.759086 1.709777
15 1.953691 1.759004 1.697709
16 1.953568 1.728486 1.653343
17 1.873078 1.720458 1.625542
18 1.970622 1.813374 1.756471
19 1.949268 1.773935 1.710465
20 1.806630 1.710974 1.601419
21 1.749910 1.704215 1.613061
22 1.888595 1.729161 1.659456
23 2.049885 1.781178 1.718880
24 1.848652 1.770212 1.656863
25 1.882910 1.701051 1.635116

Table 2: Metrics from Sharpe Ratios across 25 DR Agent Experiments
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5.2.3. One-sided t-test Results

In order to determine the effectiveness of DR techniques we perform a t-test comparing the Baseline
Sharpe ratio from table 1 to the different ratios shown in table 2.

H1 H2 H3
max[SharpeDR] Q3[SharpeDR] µ[SharpeDR]

t-statistic −15.95338723 −14.04511879 −5.24692208
p-value 8.07× 10−19 1.27× 10−17 3.46× 10−6

Table 3: One-sided t-test results comparing DR agents to the historical (no DR) agent

5.2.4. Discussion

While the t-test results indicate that DR has a strong effect on agent performance, these findings should
be interpreted with caution. DR techniques are designed to mitigate overfitting by introducing controlled
stochasticity during training, which in turn encourages agents to learn more generalizable policies. This
mechanism can plausibly account for the statistical significance observed in the t-test results.

Nonetheless, a conservative interpretation would posit that the absence of DR increases the likelihood
of overfitting to specific patterns in the training data, whereas its implementation promotes robustness
and better generalization. Under this view, the observed improvements in Sharpe ratios may stem more
from a reduction in overfitting than from a net gain in predictive power or trading intelligence.

In light of these considerations, the results suggest that DR contributes to producing more reliable and
repeatable outcomes across various performance metrics. However, to validate these findings in real-world
financial settings, additional robustness checks are warranted.

5.2.5. Reproducibility

To ensure reproducibility, all code and documentation used in this thesis are publicly available in the
associated GitHub repository: https://github.com/GaussLighter/DR4DRL. The repository contains the
full Jupyter Notebook used for training and evaluation (DR4DRL.ipynb) as well as this manuscript. The
implementation relies on widely used open-source libraries such as FinRL, Optuna, and PyTorch, and all
dependencies are listed in a requirements.txt file. While the dataset used for training is not included
due to size constraints, all data can be automatically retrieved from Yahoo Finance through the FinRL

framework’s built-in downloader. This setup enables third parties to replicate the experiments and verify
the results under the same conditions, reinforcing the transparency and robustness of the study.
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6. Conclusions & Future Work

In this section, we synthesize the key findings derived from our experiments and analyses, highlighting
the extent to which our proposed methodology has met the objectives set forth at the beginning of this
study. We also identify the limitations encountered throughout the research process and suggest potential
avenues for future work that could enhance, generalize, or further validate the approach. These directions
aim to bridge the current gaps, refine the proposed framework, and encourage continued exploration
within the domain of financial portfolio management.

6.1. Conclusions

This research demonstrates that applying DR during the training of DRL agents yields statistically and
practically significant improvements in performance and generalization. Through a robust experimental
design, we tested three hypotheses regarding the improvement in Sharpe ratios due to DR. All three
hypotheses were supported by the data:

a) The best-case Sharpe ratio improved substantially under DR.

b) The third quartile (Q3 ) of DR-trained agents surpassed the baseline.

c) The average Sharpe ratio across DR agents was higher than the baseline.

Statistical testing confirmed these differences to be significant (p < 0.01 in all cases), suggesting that DR
contributes not just to peak outcomes, but also to consistency and stability across training runs.

These results imply that DR serves as an effective regularizer, reducing overfitting and fostering
strategies that are robust to changes in market regimes. Agents trained on a variety of randomized
environments generalized better to out-of-sample data, maintaining higher Sharpe ratios in unseen con-
ditions. Overall, DR appears to be a powerful mechanism for improving the reliability and robustness of
DRL-based trading agents in financial applications.

6.2. Future Work

Despite the demonstrated benefits of DR in mitigating overfitting, further reducing overfitting remains
a promising avenue for future research. Financial markets are highly non-stationary and noisy, so even
a domain-randomized agent may inadvertently learn spurious patterns that do not generalize to new
conditions (Sutton & Barto, 2018). Strengthening the agent’s ability to generalize beyond its training
experience is therefore paramount. In this regard, several extensions and improvements can be considered
to enhance the robustness and adaptability of DRL agents for portfolio management.

One promising direction is to deploy an ensemble of DR agents to mitigate variance and capture a
wider array of market behaviors. Instead of relying on a single agent, multiple parallelized agents would
be trained, each on different randomized market scenarios or with different random seeds, yielding a
diverse set of trading policies. By combining their decisions (for example, by averaging action preferences
or voting), the ensemble can smooth out idiosyncratic behaviors of any individual agent. This approach
takes inspiration from ensemble methods in machine learning, which often achieve lower generalization
error by averaging out individual models’ biases and noise. In the context of DRL, an ensemble can
reduce the variance of returns and provide more stable performance across market regimes. Prior work
in RL suggests that such diversity-driven ensembles not only improve robustness but also can implicitly
estimate uncertainty, leading to more cautious and reliable decision-making (Osband et al., 2016). In

31



essence, each agent in the ensemble serves as an “expert” on certain market patterns, and their aggregate
output would potentially yield a more consistent and robust trading strategy than any single policy alone.

However, introducing an ensemble raises the question of how to decide which agent’s decisions to
trust at any given time. Rather than a naive averaging of actions, a more sophisticated mechanism could
dynamically assign decision authority to the agent (or subset of agents) most competent in the current
market context. Designing such a gating or selection mechanism is an open research challenge, but several
criteria and heuristics can be explored as the basis for decision authority:

a) Recent Performance: One intuitive criterion is to monitor each agent’s recent performance and
risk-adjusted returns. For example, the agent with the highest rolling Sharpe ratio over a recent
window could be given greater weight or even full control of the portfolio decisions until another
agent demonstrably outperforms it. This approach treats the ensemble as a competition, where the
best-performing policy in the current market regime takes the lead. It ensures that, at any moment,
the strategy with the most favorable balance of return and volatility (as evidenced by recent Sharpe
ratio) drives the decision-making. Such a scheme would need safeguards (e.g., minimum lookback
period or performance difference thresholds) to avoid excessive switching due to short-term noise,
but it could effectively adapt the policy to regime changes by favoring whichever agent is currently
excelling.

b) Environment Similarity: Another promising metric for agent selection is the similarity between
the current market environment and the training domain of each agent. If each agent in the
ensemble is subtly specialized (whether intentionally or as a byproduct of training on different
random market parameters), we can compute features of the ongoing market (trendiness, volatility,
correlation structure, etc.) and compare them to the environments where each agent performed best.
For instance, one agent might be particularly adept in high-volatility markets (as it was trained on
or evolved to handle large price swings), while another excels in calm, mean-reverting conditions.
By defining a distance or similarity measure in this feature space of market conditions, the system
can activate the agent whose “expertise” best matches the present regime. This approach is akin
to a contextual or regime-based gating: the ensemble controller essentially asks, “Which agent was
built for a market like this?” and biases the decision toward that agent. Implementing this might
involve clustering historical scenarios, training a meta-classifier to recognize market regimes, or
using measures like volatility indices, trend strength indicators, or reward patterns to identify the
closest match between current and past conditions. Over time, this could lead to a form of specialist
ensemble where each agent handles the scenarios it knows best, improving overall performance across
diverse conditions.

c) Bayesian Confidence Estimates: A more principled approach could leverage uncertainty esti-
mates from each agent to guide the ensemble’s choice. If each agent can quantify its confidence in
the current state or action (for example, via the variance of its value function, an approximation of a
Bayesian posterior, or the disagreement among an agent’s internal models), the ensemble controller
could assign higher weight to the agent that is most confident about the correct action. Conversely,
if an agent’s predictions carry high uncertainty in a particular situation, it might defer to others
that are more sure-footed. This idea resonates with Bayesian RL principles and ensemble methods
that treat the spread in predictions as a measure of epistemic uncertainty (Osband et al., 2016). In
practice, one could implement this by having each agent output not only an action recommendation
but also an uncertainty score (or confidence level) for that recommendation. The agent with the
lowest estimated uncertainty (or highest confidence) for the current decision would then be trusted
more heavily. This could be realized through techniques like bootstrapped Q-networks or Monte
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Carlo dropout (if using policy networks), where the variance across predictions serves as the confi-
dence metric. By harnessing these uncertainty signals, the ensemble as a whole becomes risk-aware,
potentially avoiding overconfident bets in unfamiliar states and leaning on the most knowledgeable
agent for the task at hand.

It is worth noting that these criteria for agent selection are not mutually exclusive; they could be combined
or used in different layers. For example, a hierarchical approach might first filter agents by environment
similarity (choosing a subset most suited to the detected regime) and then select or weight among those
based on recent performance and confidence levels. Designing an optimal gating mechanism could be
formulated as another learning problem in itself. One could train a meta-controller (a high-level policy)
that observes state features or summary statistics (including each agent’s confidence and recent returns)
and outputs a weighting over the ensemble’s agents. Such a meta-controller could be trained via reinforce-
ment learning or bandit algorithms, with the reward being the portfolio performance, thereby learning
to blend the experts in a way that maximizes long-term returns. This approach is conceptually related
to the mixture-of-experts frameworks in machine learning, where a gating network learns to route each
input to the most appropriate expert. In the context of our problem, the “input” is the current market
state (and possibly the agents’ internal signals), and the “experts” are the individual domain-randomized
agents.

By pursuing an ensemble-of-agents strategy with an intelligent selection mechanism, future work can
further guard against overfitting and improve adaptability. The ensemble’s diversity provides a hedge
against the risk that any single policy was over-specialized or lucky in backtesting, thereby addressing one
of the core concerns in algorithmic trading research—that a model might simply be exploiting historical
noise (Sutton & Barto, 2018). If one agent overfits to a particular artifact of the training data, its poor
confidence or subpar recent Sharpe ratio in a new regime would cause the ensemble to shift focus to
other agents, thus reducing the chance of catastrophic failures. This dynamic approach would make the
trading system more robust to regime shifts or unmodeled market phenomena, as it can quickly pivot to
a different decision-maker more suited to the new conditions.

Finally, beyond the ensemble techniques, continued evaluation and validation of these methods in
varied settings is crucial. Future research should test DR ensembles on different asset classes and longer
time horizons, and possibly in live or paper-trading environments with greater granularity, to ensure
that the gains in generalization observed in our study translate to real-world reliability. It would also
be valuable to incorporate transaction costs, market impact, and other practical constraints into the
training and evaluation; reducing overfitting is not only about achieving high Sharpe ratios on paper, but
also about maintaining performance once all frictions are accounted for. As we extend these approaches,
careful risk management and statistical validation (e.g., out-of-sample tests, rolling window analysis, and
significance checks as used in this thesis) will remain essential to confirm that improvements are genuine
and not the result of new forms of overfitting.

In summary, enriching our DRL framework with ensemble methods and intelligent agent selection
mechanisms offers a promising path forward to build trading agents that are more robust, generalizable,
and resilient in the face of the ever-changing financial markets. By tackling overfitting head-on and
giving the agent toolbox the ability to adapt or diversify its decisions, we move closer to safe and effective
deployment of DRL in real-world portfolio management.
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